Geosite and Geomorphosite Assesment of Parang Hill for Geotourism Development and Spatial Planning in Karangsambung-Karangbolong National Geopark

Open Access
Article Info
Submitted: 2020-06-04
Published: 2020-06-05
Section: Land Management
Language: EN
Bukit Parang is a hill that is composed of intrusive diabas igneous rock which breaks through the claystone of the Karangsambung Formation at 39 mya. The process of intrusion forms a columnar joint structure that is exposed around it. The burly structure of the pole is the main attraction for visitors, in terms of geology, morphology and aesthetics. Joint column occurs in intrusive igneous rocks as well as lava flows. Magma or lava breaks down due to cooling forming cracks that are perpendicular to the cooling plane. After cracks then develop to form a polygonal plane. Parang Hill is one of 41 geological sites in the Karangsambung-Karangbolong National Geopark area, which was inaugurated at the end of 2018. The number of geo-sites is necessary so that the priority of regional development and spatial planning is better. The development of geopark and tourist villages around geosite will increase the number of visitors and the carrying capacity of the environment. This study aims to look at aspects of tourism development in terms of geosite and geomorphosite assessment which includes 5 parameters namely scientific value, educational value, economic value, conservation value and added value. The method used is field observation and quantification of the 5 (five) main parameters with weighting as a feasibility value of the Bukit Parang geosite for geotourism. These quantification values can produce information and recommendations for the management of geotourism especially in Bukit Parang, and generally in Karangsambung-Karangbolong Geopark. The values of quantification of the main parameters are 75% intrinsic and scientific value, 88% educational value, 66.67% economic value, 75% conservation value and 60% added value. The total score is 14, Mean 0.74, median 1, standard deviation 0.31 and coeffisient of variation 0.4. Based on the ANOVA test about the feasibility values ranging from 0-1, Bukit Parang has a feasibility value of 0.74.

Keywords

anova; columnar joints; parang hill, geology; geopark; geotourism; spatial planning

References

  1. Asikin, S. (1974). Evolusi geologi Jawa Tengah ditinjau dari segi teori tektonik dunia yang baru. Institut Teknologi Bandung.
  2. Asikin, S., Harsolumakso, A. ., Busono, H., & Gafoer, S. (1992). Peta Geologi Lembar Banyumas. Bandung.
  3. Bemmelen, R. Van. (1949). The geology of Indonesia: General geology of Indonesia and adjacent archipelago. Nijhoff, The Hague.
  4. Bruschi, V. M., & Cendrero, A. (2005). Geosite evaluation: can we measure intangible values. Il Quaternario, 18(1), 293–306.
  5. Harloff, C. S., & Johnson, H. F. (1933). The nichols series system of electrolytic copper refining. AIME TRANS, 106, 398–407.
  6. Harsolumakso, A. H., & Noeradi., D. (1996). Deformasi pada formasi Karangsambung di daerah Luk Ulo, Kebumen, Jawa Tengah. Buletin Geologi, 26(1).
  7. Iddings, J. P. (1886). The columnar structure in the igneous rock on Orange Mountain, New Jersey. American Journal of Science (1880-1910), 31(185), 321.
  8. Iddings, J. P. (1909). Igneous rocks (vol. I—Texture and classification). New York: Wiley.
  9. Kubalíková, L. (2013). Geomorphosite Assessment for Geotourism Purposes. Czech Journal of Tourism, 2(2), 80–104.
  10. Mallet, R. (1875). On the origin and mechanism of production of the prismatic (or columnar) structure of basalt. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50(329), 122–135.
  11. Panizza, M. (2001). Geomorphosites: concepts, methods and examples of geomorphological survey. Chinese Science Bulletin, 46(1), 4–5.
  12. Pereira, V. J., Linden, K. G., & Weinberg, H. S. (2007). Evaluation of UV irradiation for photolytic and oxidative degradation of pharmaceutical compounds in water. Water Research, 41(19), 4413–4423.
  13. Pralong, J.-P. (2005). A method for assessing tourist potential and use of geomorphological sites. Géomorphologie: Relief, Processus, Environnement, 11(3), 189–196.
  14. Prastianto, R. W., Dwipayana, K. H., Syahroni, N., & Pumbarino, B. (2018). Experimental study on interference effects of two tandem cylinders wrapped around by triple helical rods with gap on induced drag. In IOP Conference Series: Earth and Environmental Science (Vol. 135, p. 12025).
  15. Reynard, E., & Coratza, P. (2007). Geomorphosites and geodiversity: a new domain of research. Geographica Helvetica, 62(3), 138–139.
  16. Serrano, E., & González-Trueba, J. J. (2005). Assessment of geomorphosites in natural protected areas: the Picos de Europa National Park (Spain). Géomorphologie: Relief, Processus, Environnement, 11(3), 197–208.
  17. Setiawan., N. I., Yuwono, S., & IGB Eddy Sucipta. (2011). The genesis of tertiary “Dakah Volcanics” in Karangsambung, Kebumen, Central Java. Majalah Geologi Indonesia, 26(1).
  18. Soeria Atmadja, R., Maury, R. C., Bellon, H., Pringgoprawiro, H., Polve, M., & Priadi, B. (1994). Tertiary magmatic belts in Java. Journal of Southeast Asian Earth Sciences, 9(1–2), 13–27.
  19. Spry, A. (1962). The origin of columnar jointing, particularly in basalt flows. Journal of the Geological Society of Australia, 8(2), 191–216.
  20. Suparka, M. E. (1988). Studi petrologi dan pola kimia kompleks ofiolit Karangsambung utara Luh Ulo. Institut Teknologi Bandung. Instirut Teknologi Bandung.
  21. Tjia, H. D. (1966). Java Sea. The encyclopedia of oceanography, 424–429.
  22. Wakita, H., Tomimoto, H., Akiguchi, I., & Kimura, J. (1994). Glial activation and white matter changes in the rat brain induced by chronic cerebral hypoperfusion: an immunohistochemical study. Acta Neuropathologica, 87(5), 484–492.
  23. Zouros, N. (2005). Assessment, protection, and promotion of geomorphological and geological sites in the Aegean area, Greece. Géomorphologie: Relief, Processus, Environnement, 11(3), 227–234.

  1. Nandian Mareta  Research and Development Division for Earth Conversation and Information, Indonesian Institute of Sciences (LIPI), Indonesia
  2. Chusni Anshori  Research and Development Division for Earth Conversation and Information, Indonesian Institute of Sciences (LIPI), Indonesia
  3. Edi Hidayat  Research and Development Division for Earth Conversation and Information, Indonesian Institute of Sciences (LIPI), Indonesia