Pemodelan Harga Tanah Berbasis Bidang Menggunakan Foto Udara Metrik Dengan Metode Radial Basis Function (RBF) Dan SIG di Koridor Jalan Prof Soedarto Kelurahan Tembalang Kota Semarang
Koridor Jalan Prof. Soedarto Kelurahan Tembalang termasuk dalam wilayah pinggiran kota Semarang yang berkembang sangat pesat dalam sektor pertumbuhan pasar perumahan. Penelitian tentang kebijakan perumahan dan mekanisme nilai pasar tanah yang ada dilakukan dengan analisis empiris menggunakan model ekonometrik tradisional dengan analisis regresi berganda dan model autokorelasi spasial berbasis GIS. Penelitian ini dilakukan dengan memodelkan harga tanah berdasarkan bidang tanah hasil interpolasi sampel harga tanah hasil survei lapangan serta menganalisis tingkat kedekatan data dengan Nilai Jual Objek Pajak (NJOP). Data persil tanah dibuat menggunakan foto udara metrik 2018 (resolusi spasial 10 cm). Variabel terikat dalam model analisis regresi menggunakan data nilai rata-rata harga tanah untuk setiap zona pada tahun 2018. Variabel yang digunakan pada pemodelan pertama yaitu lokasi geografis, aksesibilitas transportasi, pusat perdagangan dan intensitas pelayanan digunakan sebagai variabel bebas. Penerapan Radial Basis Function (RBF), model autokorelasi spasial, dalam integrasi dan analisis komparatif model dengan fokus pada analisis faktor-faktor yang mempengaruhi harga tanah, terutama heterogenitas karakter spasial.
References
- Baklacioglu, T., 2020, Predicting the fuel flow rate of commercial aircraft via multilayer perceptron, Radial Basis Function and ANFIS artificial neural networks, The Aeronautical Journal, no. August, pp. 1–19, doi: 10.1017/aer.2020.119.
- Deputi Survei Pengukuran dan Pemetaan BPN RI, 2007, Petunjuk Teknis Direktorat Survei dan Potensi Tanah: Jakarta Badan Pertanahan Nasional 2006, Penelitian Penetapan Harga Dasar Tanah di Perkotaan, Diktat Puslitbang BPN, Jakarta.
- Derdouri, A. and Murayama, Y., 2020, A comparative study of land price estimation and mapping using regression kriging and machine learning algorithms across Fukushima prefecture, Japan, Journal of Geographical Sciences, vol. 30, no. 5, pp. 794–822, doi: 10.1007/s11442-020-1756-1.
- Eckert, J. K. and Gloudemars, R. J., 1990, Property Appraisal and Assessment Administration, The International Association of Assessing Officers, Chicago, Illionis, USA.
- Esmaeilbeigi, M. and Garmanjani, G., 2017, Gaussian Radial Basis Function interpolant for the different data sites and basis centers, Calcolo, vol. 54, no. 1, pp. 155–166, doi: 10.1007/s10092-016-0181-4.
- Fasshauer, G. E., 2007, Meshfree Approximation Methods with MATLAB (Interdisciplinary Mathematical Sciences), Illinois Institute of Technology, USA
- Fitzgerald, M., Hansen, D. J., McIntosh, W., and Slade, B.A., 2020, Urban Land: Price Indices, Performance, and Leading Indicators, The Journal of Real Estate Finance and Economics, vol. 60, no. 3, pp. 396–419, 2020, doi: 10.1007/s11146-019-09696-x.
- He, Q. et al., 2019, Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms, Science of the Total Environment, vol. 663, pp. 1–15, doi: 10.1016/j.scitotenv.2019.01.329.
- He, X. and Gong, P., 2020, A Radial Basis Function-Generated Finite Difference Method to Evaluate Real Estate Index Options, Computational Economics, vol. 55, no. 3, pp. 999–1019, doi: 10.1007/s10614-019-09924-9.
- Hu, S., Yang, S., Li, W., Zhang, C., and Xu, F., 2016, Spatially non-stationary relationships between urban residential land price and impact factors in Wuhan city, China, Applied Geography, vol. 68, pp. 48–56, doi: 10.1016/j.apgeog.2016.01.006.
- Kheir, N. and Portnov, B. A., 2016, Economic, demographic and environmental factors affecting urban land prices in the Arab sector in Israel, Land use policy, vol. 50, pp. 518–527, doi: 10.1016/j.landusepol.2015.08.031.
- Linne, M. R., Kane, S. M., & Dell, G., 2000, A Guide to Appraisal Valuation Modeling, United States of America: Appraisal Institute.
- Munshi T., 2020, Accessibility, infrastructure provision and residential land value: Modelling the relation using geographic weighted regression in the city of Rajkot, India, Sustainability, vol. 12, no. 20, pp. 1–16, doi: 10.3390/su12208615.
- Qu, S., Hu, S., Li, W., Zhang, C., Li, Q., and Wang, H., 2020, Temporal variation in the effects of impact factors on residential land prices, Applied Geography, vol. 114, no. April 2019, p. 102124, doi: 10.1016/j.apgeog.2019.102124.
- Sampathkumar, V., Santhi, M. H., and Vanjinathan, J., 2015, Forecasting the Land Price Using Statistical and Neural Network Software, Procedia Computer Science, vol. 57, pp. 112–121, doi: 10.1016/j.procs.2015.07.377.
- Wang, Y. et al., 2017, Identifying the determinants of housing prices in China using spatial regression and the geographical detector technique, Applied Geography, vol. 79, pp. 26–36, doi: 10.1016/j.apgeog.2016.12.003.
- Yang, S., Hu, S., Wang, S., and Zou, L., 2020, Effects of rapid urban land expansion on the spatial direction of residential land prices: Evidence from Wuhan, China, Habitat International, vol. 101, no. June, p. 102186, doi: 10.1016/j.habitatint.2020.102186.